42 research outputs found

    Subgroup detection in genotype data using invariant coordinate selection

    Get PDF
    Background: The current gold standard in dimension reduction methods for high-throughput genotype data is the Principle Component Analysis (PCA). The presence of PCA is so dominant, that other methods usually cannot be found in the analyst's toolbox and hence are only rarely applied.Results: We present a modern dimension reduction method called 'Invariant Coordinate Selection' (ICS) and its application to high-throughput genotype data. The more commonly known Independent Component Analysis (ICA) is in this framework just a special case of ICS. We use ICS on both, a simulated and a real dataset to demonstrate first some deficiencies of PCA and how ICS is capable to recover the correct subgroups within the simulated data. Second, we apply the ICS method on a chicken dataset and also detect there two subgroups. These subgroups are then further investigated with respect to their genotype to provide further evidence of the biological relevance of the detected subgroup division. Further, we compare the performance of ICS also to five other popular dimension reduction methods.Conclusion: The ICS method was able to detect subgroups in data where the PCA fails to detect anything. Hence, we promote the application of ICS to high-throughput genotype data in addition to the established PCA. Especially in statistical programming environments like e.g. R, its application does not add any computational burden to the analysis pipeline

    Detecting parent of origin and dominant QTL in a two-generation commercial poultry pedigree using variance component methodology

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Variance component QTL methodology was used to analyse three candidate regions on chicken chromosomes 1, 4 and 5 for dominant and parent-of-origin QTL effects. Data were available for bodyweight and conformation score measured at 40 days from a two-generation commercial broiler dam line. One hundred dams were nested in 46 sires with phenotypes and genotypes on 2708 offspring. Linear models were constructed to simultaneously estimate fixed, polygenic and QTL effects. Different genetic models were compared using likelihood ratio test statistics derived from the comparison of full with reduced or null models. Empirical thresholds were derived by permutation analysis.</p> <p>Results</p> <p>Dominant QTL were found for bodyweight on chicken chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. Suggestive evidence for a maternally expressed QTL for bodyweight and conformation score was found on chromosome 1 in a region corresponding to orthologous imprinted regions in the human and mouse.</p> <p>Conclusion</p> <p>Initial results suggest that variance component analysis can be applied within commercial populations for the direct detection of segregating dominant and parent of origin effects.</p

    The GTPase Activating Rap/RanGAP Domain-Like 1 Gene Is Associated with Chicken Reproductive Traits

    Get PDF
    BACKGROUND: Abundant evidence indicates that chicken reproduction is strictly regulated by the hypothalamic-pituitary-gonad (HPG) axis, and the genes included in the HPG axis have been studied extensively. However, the question remains as to whether any other genes outside of the HPG system are involved in regulating chicken reproduction. The present study was aimed to identify, on a genome-wide level, novel genes associated with chicken reproductive traits. METHODOLOGY/PRINCIPAL FINDING: Suppressive subtractive hybridization (SSH), genome-wide association study (GWAS), and gene-centric GWAS were used to identify novel genes underlying chicken reproduction. Single marker-trait association analysis with a large population and allelic frequency spectrum analysis were used to confirm the effects of candidate genes. Using two full-sib Ningdu Sanhuang (NDH) chickens, GARNL1 was identified as a candidate gene involved in chicken broodiness by SSH analysis. Its expression levels in the hypothalamus and pituitary were significantly higher in brooding chickens than in non-brooding chickens. GWAS analysis with a NDH two tail sample showed that 2802 SNPs were significantly associated with egg number at 300 d of age (EN300). Among the 2802 SNPs, 2 SNPs composed a block overlapping the GARNL1 gene. The gene-centric GWAS analysis with another two tail sample of NDH showed that GARNL1 was strongly associated with EN300 and age at first egg (AFE). Single marker-trait association analysis in 1301 female NDH chickens confirmed that variation in this gene was related to EN300 and AFE. The allelic frequency spectrum of the SNP rs15700989 among 5 different populations supported the above associations. Western blotting, RT-PCR, and qPCR were used to analyze alternative splicing of the GARNL1 gene. RT-PCR detected 5 transcripts and revealed that the transcript, which has a 141 bp insertion, was expressed in a tissue-specific manner. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the GARNL1 gene contributes to chicken reproductive traits

    Genetic loci inherited from hens lacking maternal behaviour both inhibit and paradoxically promote this behaviour

    Get PDF
    International audienceBackground A major step towards the success of chickens as a domesticated species was the separation between maternal care and reproduction. Artificial incubation replaced the natural maternal behaviour of incubation and, thus, in certain breeds, it became possible to breed chickens with persistent egg production and no incubation behaviour; a typical example is the White Leghorn strain. Conversely, some strains, such as the Silkie breed, are prized for their maternal behaviour and their willingness to incubate eggs. This is often colloquially known as broodiness.ResultsUsing an F2 linkage mapping approach and a cross between White Leghorn and Silkie chicken breeds, we have mapped, for the first time, genetic loci that affect maternal behaviour on chromosomes 1, 5, 8, 13, 18 and 19 and linkage group E22C19W28. Paradoxically, heterozygous and White Leghorn homozygous genotypes were associated with an increased incidence of incubation behaviour, which exceeded that of the Silkie homozygotes for most loci. In such cases, it is likely that the loci involved are associated with increased egg production. Increased egg production increases the probability of incubation behaviour occurring because egg laying must precede incubation. For the loci on chromosomes 8 and 1, alleles from the Silkie breed promote incubation behaviour and influence maternal behaviour (these explain 12 and 26 % of the phenotypic difference between the two founder breeds, respectively).ConclusionsThe over-dominant locus on chromosome 5 coincides with the strongest selective sweep reported in chickens and together with the loci on chromosomes 1 and 8, they include genes of the thyrotrophic axis. This suggests that thyroid hormones may play a critical role in the loss of incubation behaviour and the improved egg laying behaviour of the White Leghorn breed. Our findings support the view that loss of maternal incubation behaviour in the White Leghorn breed is the result of selection for fertility and egg laying persistency and against maternal incubation behaviour

    A Genome-Wide SNP Scan Reveals Novel Loci for Egg Production and Quality Traits in White Leghorn and Brown-Egg Dwarf Layers

    Get PDF
    Availability of the complete genome sequence as well as high-density SNP genotyping platforms allows genome-wide association studies (GWAS) in chickens. A high-density SNP array containing 57,636 markers was employed herein to identify associated variants underlying egg production and quality traits within two lines of chickens, i.e., White Leghorn and brown-egg dwarf layers. For each individual, age at first egg (AFE), first egg weight (FEW), and number of eggs (EN) from 21 to 56 weeks of age were recorded, and egg quality traits including egg weight (EW), eggshell weight (ESW), yolk weight (YW), eggshell thickness (EST), eggshell strength (ESS), albumen height(AH) and Haugh unit(HU) were measured at 40 and 60 weeks of age. A total of 385 White Leghorn females and 361 brown-egg dwarf dams were selected to be genotyped. The genome-wide scan revealed 8 SNPs showing genome-wise significant (P<1.51E-06, Bonferroni correction) association with egg production and quality traits under the Fisher's combined probability method. Some significant SNPs are located in known genes including GRB14 and GALNT1 that can impact development and function of ovary, but more are located in genes with unclear functions in layers, and need to be studied further. Many chromosome-wise significant SNPs were also detected in this study and some of them are located in previously reported QTL regions. Most of loci detected in this study are novel and the follow-up replication studies may be needed to further confirm the functional significance for these newly identified SNPs

    A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development

    Get PDF
    Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants

    Epigenetics and inheritance of phenotype variation in livestock

    Full text link
    corecore